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We study the quantization of a mesoscopic capacitance coupling circuit with resistances,
derive the density matrix of the system, and study the influence of temperature on the
fluctuation of the system.
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1. INTRODUCTION

Because of the rapid development in nanometer techniques and microelec-
tronics, the trend in the miniaturization of integrated circuits and components
toward atomic scale dimension becomes strong and definite (Buot, 1993). Clearly,
when the charge-carrier inelastic coherence length and the charge-carrier confine-
ment dimension approach the Fermi wavelength, the physics of classical devices is
expected to be invalid, and quantum effects must be taken into account. The quan-
tum effects for a single LC lossless circuit was first discussed by Louisell (1973).
Following a similar line of thought, many authors have discussed the quantum
effects of mesoscopic inductance coupling circuit (Song and Zhu, in press; Wang
et al., 2000), capacitance coupling circuit (Wanget al., 2000), and two LC circuits
with mutual-inductance (Fan and Pan, 1998). However, most researchers have
not taken resistance of circuit into account. Because of the fact that the practical
electric circuits always have resistance, the study of the quantum effects of meso-
scopic circuits including resistance is very interesting. In this paper, we study the
quantization of a mesoscopic capacitance coupling circuit including resistance. By
introducing canonical transformation, we turn the dissipative capacitance coupling
circuit into a nondissipative capacitance coupling circuit. Moreover, we derive the
density matrix of the system and study the influence of temperature on the fluctu-
ation of the system.
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Fig. 1. Capacitance coupling circuit.

2. THE QUANTIZATION OF A MESOSCOPIC CAPACITANCE
COUPLING CIRCUIT WITH RESISTANCES

We consider a mesoscopic capacitance coupling circuit with resistances
(see Fig. 1). According to Kirchhoff law, the classical equations of motion of the
system are

L1q̈1(t)+ R1q̇1(t)+ q1(t)

C1
+ q1(t)− q2(t)

C
= ε(t), (1a)

L2q̈2(t)+ R2q̇2(t)+ q2(t)

C2
− q1(t)− q2(t)

C
= 0, (1b)

whereqi (t), Li , andCi (i = 1, 2) are the charges, inductances, and capacitances of
two-component circuits, respectively,C is coupling capacitance of two-component
circuit, ε(t) is the electromotive force. Setpi (t) = Li q̇i (t) (i = 1, 2), andqi (t),
pi (t) are denoted byqi , pi for simplicity. So Eq. (1) can be written as

ṗ1 = ε(t)− R1

L1
p1− q1

C′1
+ q2

C
, q̇1 = 1

L1
p1,

1

C′1
= 1

C1
+ 1

C
, (2a)

ṗ2 = −R2

L2
p2− q2

C′2
+ q1

C
, q̇2 = 1

L2
p2,

1

C′2
= 1

C2
+ 1

C
, (2b)

From Eq. (2) we can obtain

∂q̇1

∂q1
+ ∂ ṗ1

∂p1
= −R1

L1
,
∂q̇2

∂q2
+ ∂ ṗ2

∂p2
= −R2

L2
. (3)



P1: IZO

International Journal of Theoretical Physics [ijtp] pp1166-ijtp-484387 April 28, 2004 4:29 Style file version May 30th, 2002

Quantum Effects of a Mesoscopic Capacitance Coupling Circuit With Resistances 101

Eq. (3) implies that in a dissipative system (R1 6= 0, R2 6= 0), qi and pi (i = 1, 2)
cannot be constructed as common canonical variables. When we quantize Eq. (2)
in the Heisenberg picture, the equations of motion for coordinate and momen-
tum operators share the same form as Eq. (2). But the classical variablesqi and
pi (i = 1, 2) become operators, which observe appropriate commutation relations,
namely the quantization condition. From the operator equation of motion corre-
sponding to Eq. (2) we can obtain

dx1

dt
= d

dt
(q1 p1− p1q1) = q̇1 p1+ q1 ṗ1− ṗ1q1− p1q̇1 = −R1

L1
x1+ 1

C
x5, (4a)

dx2

dt
= −R2

L2
x2− 1

C
x5, (4b)

dx3

dt
= −R2

L2
x3− 1

C′2
x5+ 1

L1
x6, (4c)

dx4

dt
= −R1

L1
x4+ 1

C′1
x5− 1

L2
x6, (4d)

dx5

dt
= 1

L2
x3− 1

L1
x4, (4e)

dx6

dt
= − 1

C
x1+ 1

C
x2− 1

C′1
x3+ 1

C′2
x4−

(
R1

L1
+ R2

L2

)
x6, (4f)

where

x1 = [q1, p1], x2 = [q2, p2], x3 = [q1, p2],

x4 = [q2, p1], x5 = [q1, q2], x6 = [ p1, p2]. (5)

Generally speaking, it is very difficulty to solve Eq. (4). WhenR1
L1
= R2

L2
= λ,

however, Eq. (4) has the following form of solutions:

x1 = [q1, p1] = i h exp(−λt), x2 = [q2, p2] = i h exp(−λt) = x1,

x3 = [q1, p2] = 0, x4 = [q2, p1] = 0,

x5 = [q1, q2] = 0, x6 = [ p1, p2] = 0. (6)

If we introduce the canonicalization transformation (Peng, 1980) (not the
common canonical transformation) as follows:

Q1(t) = q1 exp

(
1

2
λt

)
, P1(t) = L1Q̇1(t) =

(
p1+ 1

2
R1q1

)
exp

(
1

2
λt

)
, (7a)

Q2(t) = q2 exp

(
1

2
λt

)
, P2(t) = L2Q̇2(t) =

(
p2+ 1

2
R2q2

)
exp

(
1

2
λt

)
, (7b)
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then Eq. (1) becomes

L1Q̈1(t)+ λ1Q1(t)− 1

C
Q2(t) = ε′(t), (8a)

L1Q̈2(t)+ λ2Q2(t)− 1

C
Q1(t) = 0, (8b)

or

Q̇1(t) = 1

L1
P1(t), Ṗ1(t) = ε′(t)− λ1Q1(t)+ 1

C
Q2(t), (9a)

Q̇2(t) = 1

L2
P2(t), Ṗ2(t) = −λ2Q2(t)+ 1

C
Q1(t), (9b)

where

λ1 = 1

C′1
− R2

1

4L1
, λ2 = 1

C′2
− R2

2

4L2
, ε′(t) = ε(t) exp

(
1

2
λt

)
. (10)

From Eq. (9) we can prove thatQi andPi can be constructed as common canonical
variables, here and hereafterQi (t), Pi (t) are denoted byQi , Pi for simplicity.
By using Hamiltonian canonical equations, we obtain the classical Hamiltonian
corresponding to Eq. (8)

H = 1

2L1
P2

1 +
1

2L2
p2

2 +
1

2
λ1Q2

1+
1

2
λ2Q2

2−
1

C
Q1Q2− ε′(t)Q1, (11)

Eq. (11) is analogous to two harmonic oscillators with a coordinate coupling term,
the variablesQ1, Q2 and P1, P2 play the role of coordinate and momentum of
analytic mechanics.

The quantization of Eq. (11) only means that the classical variablesQ1, Q2

and P1, P2 become operators. From Eqs. (6) and (7), we obtain the following
commutation relations:

[Qk, Pl ] = i hδkl , [Q1, Q2] = [ P1, P2] = 0. (12)

To diagonalize the HamiltonianH of Eq. (11), we introduce the following unitary
operatorU :

U =
∫ ∫
|AQ〉〈Q|d Q1d Q2, (13)

where

A =
(

A11 A12

A21 A22

)
, (14)

A11 = B cos(ϕ/2), A12 = B sin(ϕ/2), (15)

A21 = −B−1 sin(ϕ/2), A22 = B−1 cos(ϕ/2), (16)
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B =
(

L2

L1

)1/4

, (17)

tgϕ = 2

C(λ1B2− λ2B−2)
, (18)

|Q〉 =
∣∣∣∣(Q1

Q2

)〉
= |Q1, Q2〉 = |Q1〉|Q2〉, (19)

|Qi 〉 (i = 1, 2) is coordinate eigenstate (Fan, 1997). It is easily proved that

U−1Q1U = A11Q1+ A12Q2, U−1Q2U = A21Q1+ A22Q2, (20)

U−1P1U = A22P1− A21P2, U−1P2U = −A12P1+ A11P2. (21)

Substituting Eqs. (20) and (21) into Eq. (11) we have

H ′ = U−1HU

= P2
1

2m1
+ P2

2

2m2
+ 1

2
m1ω

2
1Q2

1+
1

2
m2ω

2
2Q2

2− (A11Q1+ A12Q2)ε′(t), (22)

where

1

m1
= A2

22

L1
+ A2

12

L2
,

1

m2
= A2

21

L1
+ A2

11

L2
, (23)

ω2
1 =

(
A2

22

L1
+ A2

12

L2

)(
λ1A2

11+ λ2A2
21−

2

C
A11A21

)
, (24)

ω2
2 =

(
A2

21

L1
+ A2

11

L2

)(
λ1A2

12+ λ2A2
22−

2

C
A12A22

)
. (25)

From Eq. (12) we construct the following non-Hermitian operators:

ak =
√

mkωk

2h

(
Qk + i

mkωk
Pk

)
, k = 1, 2, (26)

a+k =
√

mkωk

2h

(
Qk − i

mkωk
Pk

)
, k = 1, 2, (27)

which satisfy the following commutation relations:

[ak, a+l ] = i hδkl , [ak, aj ] = 0,

[a+k , a+l ] = 0, (28)

then Eq. (22) can be rewritten as

H ′ = hω1

(
a+1 a1+ 1

2

)
+ hω2

(
a+2 a2+ 1

2

)
+ V1(t)(a1+ a+1 )+ V2(t)(a2+ a+2 ),

(29)
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where

V1(t) = −A11ε
′(t)

√
h

2m1ω1
, V2(t) = −A12ε

′(t)

√
h

2m2ω2
. (30)

We now calculate the normal product form ofU . Substituting the explicit
form of the coordinate eigenstate|Qi 〉 (i = 1, 2) in the Fock space

|Qi 〉 =
(

miωi

πh

)1/4

exp

[
−miωi

2h
Q2

i +
√

2miωi

h
Qi a

+
i −

1

2
a+

2

i

]
|0〉i , i = 1, 2

(31)
into Eq. (13) and using the technique of the integration within an ordered product
of operators (IWOP) (Fan, 1997; Fanet al.1987) we can perform the integration
in Eq. (13) to obtain the normal product form ofU

U =
∫ ∫
|A11Q1+ A12Q2, A21Q1+ A22Q2〉〈Q1, Q2|dQ1dQ2

=
√

4m1m2ω1ω2

h21
exp

(
σ1a+

2

1 − σ1a+
2

2 + σ2a+1 a+2
)

: exp (01a+1 a1+ 01a+2 a2+ 02a+1 a2− 02a+2 a1)

: exp
(
τ1a2

1 − τ1a2
2 + τ2a1a2

)
, (32)

where : : denotes the normal ordering,

1 =
(

m1ω1A12

h

)2

+
(

m2ω2A21

h

)2

+ m1m2ω1ω2

h2 [2+ (B2+ B−2) cos2(ϕ/2)], (33)

σ1 = m1ω1

1h2

[
m1ω1A2

12+m2ω2
(
1+ A2

11

)]− 1

2
, (34)

σ2 =
√

m1m2ω1ω2

1h2 (m1ω1−m2ω2) sin(ϕ), (35)

01 = 2m1m2ω1ω2

1h2 (B+ B−1) cos(ϕ/2)− 1, (36)

02 =
√

4m1m2ω1ω2

1h2 (m1ω1B+m2ω2B−1) sin(ϕ/2), (37)

τ1 = m1ω1

1h2

[
m1ω1A2

12+m2ω2
(
1+ A2

22

)]− 1

2
, (38)

τ2 = −
√

m1m2ω1ω2

1h2 (m1ω1B2−m2ω2B−2) sin(ϕ). (39)
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It can be proved that the time evolution operatorUs(t,0) corresponding toH ′

is given by (Fan, 1997)

Us(t, 0)= expb−i h(ω1a+1 a1+ ω2a+2 a2)tc
expb−i (η∗1a+1 + η1a1+ η∗2a∗2 + η2a2)c, (40)

here we have omitted a phase factor,

ηk(t) =
∫ t

0
Vk(τ ) exp(−i hωkτ )dτ. (41)

Therefore, the wave function of the system at timet is given by

|ψ(t)〉 = UUs(t, 0)|00〉, (42)

here we suppose that the initial state of the system is in two-mode vacuum state
|00〉. When the external electric source is only instantaneously switched on, say, for
an infinitesimal timet = ρ → 0 and then switched off, the system is in a rotated
two single-mode squeezed state

|ψ(t = ρ)〉p→0 = U |00〉

=
√

4m1m2ω1ω2

h21
exp

(
σ1a+

2

1 − σ1a+
2

2 + σ2a+1 a+2
)|00〉

=
√

4m1m2ω1ω2

h21
exp [(a+1 a2− a+2 a1)θ] exp

[
ν
(
a+

2

2 − a+
2

1

)]|00〉,
(43)

where

θ = 1

2
arctan

(
− σ2

2σ1

)
, ν = σ1+ 1

2
σ2 cot(θ ), (44)

expb(a+1 a2− a+2 a1)θc is a rotation operator. From Eqs. (20) and (21) we have

〈(1Q1)2〉 = 〈00
∣∣U+Q2

1U
∣∣00
〉− (〈00|U+Q1U |00〉)2

= h A2
11

2m1ω1
+ h A2

12

2m2ω2
, (45)

〈(1Q2)2〉 = 〈00
∣∣U+Q2

2U
∣∣00
〉− (〈00|U+Q2U |00〉)2

= h A2
21

2m1ω1
+ h A2

22

2m2ω2
, (46)

〈(1P1)2〉 = 〈00
∣∣U+P2

1 U
∣∣00
〉− (〈00|U+P1U |00〉)2

= hm1ω1A2
22

2
+ hm2ω2A2

21

2
, (47)
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〈(1P2)2〉 = 〈00
∣∣U+P2

2 U
∣∣00
〉− (〈00|U+P2U |00〉)2

= hm1ω1A2
12

2
+ hm2ω2A2

11

2
, (48)

From Eq. (4) we obtain the quantum fluctuations ofqi andpi (i = 1, 2) in the state
U |00〉 as follows:

〈(1q1)2〉 = 〈q2
1

〉− 〈q1〉2

= [〈00
∣∣U+Q2

1U
∣∣00
〉− (〈00|U+Q1U |00〉)2

]
exp(−λt)|t=ρ→0

= 〈(1Q1)2〉, (49)

〈(1q2)2〉 = 〈(1Q2)2〉, (50)

〈(1p1)2〉 = 〈(1P1)2〉, (51)

〈(1p2)2〉 = 〈(1P2)2〉, (52)

3. DENSITY MATRIX AND ENSEMBLE AVERAGE
OF THE SYSTEM

To study the influence of temperature on the fluctuation of the system, we now
calculate the density matrix of the system. Usually, in the coordinate representation,
a density matrixρ(x, x′;β) is calculated by the Bloch equation

− ∂

∂β
ρ(x, x′;β) = Hρ(x, x′;β), (53)

whereβ = (kBT)−1, kB is the Boltzmann constant. Here, we use the unitary trans-
formationU to calculate the density matrixρ(Q1, Q2; Q′1, Q′2;β) of the system.
For simplicity, we only consider the caseε(t) = 0. From Eqs. (20)–(22) we have

ρ(Q1, Q2; Q′1, Q′2;β) = 〈Q1, Q2| exp(−βH )|Q′1, Q′2〉
= 〈Q1, Q2|U exp(−βH ′)U+|Q′1, Q′2〉
= 〈A22Q1− A12Q2,−A21Q1+ A11Q2| exp(−βH ′)|
× A22Q′1− A12Q′2,−A21Q′1+ A11Q′2〉, (54)

where we have usedU+|Q1, Q2〉 = |A−1
(Q1

Q2

)〉. Because the position representa-
tion of the density matrix of a single harmonic oscillator is known as (Mills and
Robiette, 1985)

〈x| exp

[
−β

(
p2

2m
+ 1

2
mω2x2

)]
|x′〉 =

(
mω

2πh sinh(hωβ)

)1/2

exp

[
− mω

2h sinh(hωβ)
((x2+ x

′2) cosh(hωβ)− 2xx′)
]

, (55)
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we have

ρ(Q1, Q2; Q′1, Q′2;β) = 〈Q1, Q2| exp(−βH )|Q′1, Q′2〉

= 1

2πh

(
m1m2ω1ω2

sinh(hω1β) sinh(hω2β)

)1/2

exp

{
− m1ω1

2h sinh(hω1β)

× [((A22Q1− A12Q2)
2+ (A22Q′1− A12Q′2)

2) cosh(hω1β)

− 2(A22Q1− A12Q2) (A22Q′1− A12Q′2)]

− m2ω2

2h sinh(hω2β)
[((−A21Q1+ A11Q2)2

+ (−A21Q′1+ A11Q′2)2) cosh(hω2β)

− 2(−A21Q1+ A11Q2)(−A21Q′1+ A11Q′2)]−
}
. (56)

Similarly, we can calculateρ(P1, P2; P′1, P′2;β) in the momentum
representation

ρ(P1, P2; P′1, P′2;β) = 〈P1, P2| exp(−βH )|P′1, P′2〉
= 〈p1, p2|U exp(−βH ′)U+|p′1, p′2〉
= 〈A11P1+ A21P2, A12P1+ A22P2| exp(−βH ′)|A11P′1
+ A21P′2, A12P′1+ A22P′2〉. (57)

By using the momentum representation of the density matrix of a single harmonic
oscillator (Mills and Robiette, 1985)

〈p| exp

[
−β

(
p2

2m
+ 1

2
mω2x2

)]
|p′〉 =

(
1

2πhmω sinh(hωβ)

)1/2

exp

[
− 1

2hmω sinh(hωβ)
((p2+ p

′2) cosh(hωβ)− 2pp′)
]

, (58)

we have

ρ(P1, P2; P′1, P′2;β) = 〈P1, P2| exp(−βH )|P′1, P′2〉

= 1

2πh

(
1

m1m2ω1ω2 sinh(hω1β) sinh(hω2β)

)1/2

× exp

{
− 1

2hm1ω1 sinh(hω1β)
[(( A11P1+ A21P2)2

+ (A11P′1+ A21P′2)2) cosh(hω1β)− 2(A11P1+ A21P2)

× (A11P′1+ A21P′2)] − 1

2hm2ω2 sinh(hω2β)
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× [(( A12P1+ A22P2)2+ (A12P′1+ A22P′2)2) cosh(hω2β)

− 2(A12P1+ A22P2)(A12P′1+ A22P′2)]−
}
. (59)

From Eqs. (56) and (59) we have

〈(1Q1)2〉 = 〈Q2
1

〉− 〈Q1〉2

=

∫ ∫
Q2

1ρ(Q1, Q2; Q1, Q2;β)dQ1dQ2∫ ∫
ρ(Q1, Q2; Q1, Q2;β)dQ1dQ2

−


∫ ∫

Q1ρ(Q1, Q2; Q1, Q2;β)dQ1dQ2∫ ∫
ρ(Q1, Q2; Q1, Q2;β)dQ1dQ2


2

= h A2
11

2m1ω1 tanh

(
hω1β

2

) + h A2
12

2m2ω2 tanh
(

hω2β
2

) , (60)

〈(1Q2)2〉 = 〈Q2
2

〉− 〈Q2〉2

=

∫ ∫
Q2

2ρ(Q1, Q2; Q1, Q2;β)dQ1dQ2∫ ∫
ρ(Q1, Q2; Q1, Q2;β)dQ1dQ2

−


∫ ∫

Q2ρ(Q1, Q2; Q1, Q2;β)dQ1dQ2∫ ∫
ρ(Q1, Q2; Q1, Q2;β)dQ1dQ2


2

= h A2
21

2m1ω1 tanh

(
hω1β

2

) + h A2
22

2m2ω2 tanh
(

hω2β
2

) , (61)

〈(1P1)2〉 = 〈P2
1

〉− 〈P1〉2

=

∫ ∫
P2

1ρ(P1, P2; P1, P2;β)dP1dP2∫ ∫
ρ(P1, P2; P1, P2;β)dP1dP2
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−


∫ ∫

P1ρ(P1, P2; P1, P2;β)dP1dP2∫ ∫
ρ(P1, P2; P1, P2;β)dP1dP2


2

= hm1ω1A2
22

2 tanh

(
hω1β

2

) + hm2ω2A2
21

2 tanh
(

hω2β
2

) , (62)

〈(1P2)2〉 = 〈P2
2

〉− 〈P2〉2

=

∫ ∫
P2

2ρ(P1, P2; P1, P2;β)dP1dP2∫ ∫
ρ(P1, P2; P1, P2;β)dP1dP2

−


∫ ∫

P2ρ(P1, P2; P1, P2;β)dP1dP2∫ ∫
ρ(P1, P2; P1, P2;β)dP1dP2


2

= hm1ω1A2
12

2 tanh

(
hω1β

2

) + hm2ω2A2
11

2 tanh
(

hω2β
2

) (63)

From Eq. (7) we obtain the fluctuations of chargesq1 andq2 as follows:

〈(1q1)2〉 = 〈q2
1

〉− 〈q1〉2

=

 h A2
11

2m1ω1 tanh

(
hω1β

2

) + h A2
12

2m2ω2 tanh
(

hω2β
2

)
 exp(−λt), (64)

〈(1q2)2〉 = 〈q2
2

〉− 〈q2〉2

=

 h A2
21

2m1ω1 tanh

(
hω1β

2

) + h A2
22

2m2ω2 tanh
(

hω2β
2

)
 exp(−λt), (65)

From the the property of the function tanh(x) we can see that the fluctuations of the
chargesq1 andq2 increase with increasing temperatureT . As T → 0 andt → 0,
Eqs. (64) and (65) turn back to Eqs. (49) and (50).
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4. CONCLUSION

By introducing canonicalization transformation (not the common canonical
transformation), we study the quantization of a mesoscopic capacitance coupling
circuit with resistances. By taking a unitary transformation approach, we turn
the system into two independent harmonic oscillators, then we discuss the time
evolution of the system. It is remarkable that when the external electric source is
only instantaneously switched on, say, for an infinitesimal timet = ρ → 0 and
then switched off, the system is in a rotated squeezed vacuum state. To study the
influence of temperature on the fluctuation of the system, we calculate the density
matrix of the system. The results show that the fluctuations of the chargesq1 and
q2 increase with increasing temperatureT .

It should be pointed out that our discussion is only confined to the special case
of R1

L1
= R2

L2
= λ. The study of the system in general case would be very interesting.

But we have trouble in solving Eq. (4).
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